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Symmetry of Lyapunov Spectrum 
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The symmetry of the spectrum of Lyapunov exponents provides a useful quan- 
titative connection between properties of dynamical systems consisting of N 
interacting particles coupled to a thermostat, and nonequilibrium statistical 
mechanics. We obtain here sufficient conditions for this symmetry and analyze 
the structure of 1IN corrections ignored in previous studies. The relation of the 
Lyapunov spectrum symmetry with some other symmetries of dynamical 
systems is discussed. 
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1. I N T R O D U C T I O N  

Many important dynamical quantities are expressed in terms of charac- 
teristic or Lyapunov exponents (LE), which are rates of exponential 
growth of separation of initially close phase trajectories. There exist several 
algorithms to calculate LE, 11'2~ but the more degrees of freedom the system 
has, the more time-consuming the computation procedure is. Therefore, 
it is extremely important that some physical systems have a symmetric 
Lyapunov spectrum (SLS). It is well known that Hamiltonian systems have 
an SLS with respect to zero due to their underlying symplectic structure. ~3) 
For a system of anharmonic oscillators with a constant friction a similar 
symmetry was noted with respect to half the friction coefficient. 14~ 

In recent publications ~7 9~ an SLS associated with the equations of 
motion of a many-particle system representing a nonequilibrium stationary 
fluid motion was discovered (see also refs. 5 and 6). In that case, the 
symmetry property was established analytically only for large systems, 17~ 
i.e., when terms of order 1, compared to those of order N, the number of 
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particles in the system, were neglected, although computer simulations for 
N = 4 and even 2 also showed a symmetric Lyapunov spectrum, within the 
experimental accuracy. 19~ These results also raised the following questions: 
What properties of the equations of motion lead to an SLS? Is this 
symmetry only an asymptotic property for large systems, and if so, can one 
then give an estimate of the error for finite systems? In the present study 
we try to answer these questions as generally as possible. 

The paper is organized as follows. In Section 2 we introduce some use- 
ful definitions and review previously known results about systems having 
an SLS. Section 3 is devoted to a derivation of useful sufficient conditions 
for an SLS. In Section4 we find the general form of the equations of 
motion for thermostatted systems. Thermostat coupling terms have to be 
added to the adiabatic equations of motion for a stationary state to exist, 
because, without a coupling to a heat bath the temperature of the system 
will rise indefinitely due to the continuous work done on the system by the 
external forces. The results we report are that if the adiabatic system is 
Hamiltonian with a short-range interaction potential and some additional 
restrictions are satisfied, then the thermostatted system has an SLS as an 
asymptotic property when N ~  ~ ,  and the correction terms are of the 
order of I/N. We also analyze the structure of the 1IN corrections to the 
symmetry constant. In Section 5 we consider as an example the color 
conductivity algorithm designed to simulate self-diffusion under the effect 
of a constant external field. The symmetry constant is proportional to the 
time-averaged thermostat coupling multiplier for any number of particles 
in this case. 

Finally, we summarize our results, and discuss the relation of SLS to 
other symmetries of dynamical systems and the connection between SLS 
and nonequilibrium statistical mechanics. 

2. D E F I N I T I O N S  A N D  OUTL INE  OF P R E V I O U S  W O R K  

Consider a dynamical system described by a set of equations 

/I = f(q,  p, t) 

= g(q,  p, t) 
(1) 

where the components of the n-dimensional vectors q and p consist of the 
coordinates qi and momenta Pi, respectively, of the N d-dimensional 
particles of the system. In terms of phase space variables F these equations 
may be written as 

f" = G(F, t) (2) 
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with initial conditions 

r ( 0 )  = ro (3) 

We represent the solution of (2)-(3) in the form of a phase/low 

~ ' ( r o )  = r ( / ) ,  t~ r0, oo) (4) 

Suppose G(F, t) and its first derivatives are continuous functions and 
0G/OF is bounded on the solution (4); then we can define the local 
stability matrix 

�9 1 l O G ( r ,  t)lq 
I  -f-II (5) 

and the evolution matrix 

S~-o= = Texp A(F(v), z )dr  (6) 

Texp indicates a time-ordered exponential with the latest times to the left, 
which can be written explicitly as 

t/e 

Sro' -- lim [-I e'A r ( t - i r l . t - j~  (7) 
~ O j =  O 

The Lyapunov exponents (LE) are defined by "~ 

2i = ln  #i (8) 

where the {/~i} are the eigenvalues of the symmetric positive-definite global 
stability matrix: 

Mro lim rtK't ]VK't "]l/2t (9) 
i ~ o o  

The SLS property is best known for Hamiltonian systems. TM The local 
stability matrix of Hamiltonian systems consisting of N particles is 
composed of four n x n (n = Nd) blocks with one diagonal block equal to 
minus the transpose of the other one and symmetric off-diagonal blocks. 
As a consequefice of this block structure the infinitesimally symplectic 
condition holds: 

A~J+JA - - o  (lO) 
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where J is the simplest antisymmetric matrix: 

(o, ,,,, 

with I and 0 the n x n identity and null matrices, respectively. 
The global symplectic condition 

SrJS=J (12) 

follows then from the local condition (10) and definition (6). The SLS 
property with respect to zero is a consequence of the global condition (12) 
and definition (9) ~ 

2/+22.+1 i=0 ,  i = i  ..... n (13) 

Another important case is a Hamiltonian system with uniform 
damping described by the following equations~4~: 

OH 
q=~p 

OH 

Oq 
~ p  

(14) 

where c~ is a positive constant. It can be formally reduced to a Hamiltonian 
system without damping by means of the transformation ( ~  

~ = q ,  O=pe  ' ' ,  f f I=He  ~'' (15) 

The local condition (10) in this case is generalized to ~4~ 

A r J + J A  = - ~ l  (16) 

and leads to the generalized global symplectic condition 

S r J S  = e -~ ' J  (17) 

which in turn leads to an SLS with respect to -ct/2: 

) . i+22 , ,+ l_ i= - -u ,  i = I  ..... n (]8) 

The sum of the LE in the equations (13) or (18) can be related to average 
local features. Indeed, eigenvalues of A(F, t) show the rates of deviation of 
two initially infinitesimally close trajectories along the directions of corre- 
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sponding eigenvectors. The sum of all local eigenvalues (equal to the trace 
of A) is the instant rate of the phase volume growth in the infinitesimally 
small area around the given phase point. The sum of all LE is the mean 
rate of the phase volume growth as it evolves under the dynamics; therefore 
it is an average of the instant rates. Thus the sum of all LE should be equal 
to the trace of A averaged along the solution of (2). Now we formally 
derive this relationship using (8), (9), and (7): 

2 n  t 

Z 2i=  In det M = t r A  a~j ,-~lim -lt Ii  tr A(F(t),  r ) d r  (19) 
i = 1  

From (19) and (18) we see that for a system with an SLS property 
with respect to c~ there is the following connection between the symmetry 
constant c~ and the trace of the local stability matrix: 

t rA 
= (20) 

2n 

If our system is ergodic, the time average over the phase flow (4) 
designated by the bar is equal to the phase space average. The practical use 
of the condition (20) was demonstrated in ref. 12 on a few examples. 

3. SUFFICIENT CONDIT ION FOR THE 
LOCAL STABILITY M A T R I X  

It is possible to derive n necessary and sufficient conditions on the 
global stability matrix M for the existence of an SLS in a variety of ways. 
However, all those conditions involve either the reflexive property of the 
characteristic polynomial of M, 13~ or properties of traces of powers of 
M, cj2~ both of which use explicit solutions of the equations of motion. 
These n conditions can also be expressed in terms of the local stability 
matrix A, but only the relation (19) between the determinant of M and the 
time average of the trace of A over the trajectory yields a simple necessary 
condition (20). However, other useful sufficient conditions can be obtained 
following ideas used in the symplectic caseJ 3~ 

In order to do this it is convenient to introduce the matrix 

L( t )  = M z' = ST(t )  S ( t )  (21) 

with eigenvalues {vi(t)}. It follows from (8) that 

In vi(t)  
2i=  lim - -  (22) 

,-~_ 2t 



1150 G u palo et  al.  

A symmetric Lyapunov spectrum (13) around zero is equivalent to 

lim [vi(t) v2,,+ l_ i ( t ) ]  t/~2,) = 1, i =  1 ..... n (23) 

To transform this condition on the global variables into a sufficient condi- 
tion on the local variables, we require that the matrices L and L-~ have 
the same Jordan form, since (23) then holds automatically. For this it is 
necessary and sufficient that there exists a nonsingular matrix P such that 
L = P L - ~ P  -j. We further require the matrix P to be the same for all 
times t: 

sT(t) S(t) pST(t) S(t)= P (24) 

The system of sufficient conditions for (24) is then 

sT( t )  p s ( t )  = P 

S(t) psT(t) = P 
(25) 

We note that for the special case P = J  the first equation in (25) is the 
global symplectic conditionJ 3~ It is easy to show that the second equation 
in (25) is then redundant due to the property j2= - I .  

To get a sufficient condition for the first equation in (25) in terms of 
the local stability matrix we use the definition (7) of the matrix S to obtain 

lim e*Arcrl'~")pe~AWl')")= P (26) 
~ 0  

Expanding the left-hand side of (26) in the powers of e, we obtain to O(e) 

Ar(r(t), t) P+ PA(F(t), t) = 0  (27) 

A particular case of (27) is the infinitesimally symplectic condition, ~31 
which could be obtained from (27) by setting P=J.  The condition (27) is 
not only necessary, but also sufficient for (26). This can be readily seen by 
expanding the left-hand side of (26) in powers of e and using (27). 

Similarly, from the second condition in (25) one obtains another 
condition on the local stability matrix: 

A(F(t), t )P+PAr(F(t) ,  t ) = 0  (28) 

Equations (27) and (28) give the sufficient conditions on the local stability 
matrix for an SLS. Once again for P = J the second condition is redundant. 

It has been shown 1~21 that a physical system having an SLS with 
respect to -c~/2 with ~ > 0  can be derived from a system with an SLS 
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property with respect to zero by an exponential dilation of the phase space 
coordinates which leads to - ( c t / 2 ) l  being added to the local stability 
matrix, to the evolution matrix multiplied by e -t~/2)', and all LE being 
shifted by -~ /2 .  This approach can be generalized even further. 17~ If 
- �89 t ) I  is added to the local stability matrix of the system with an SLS 
with respect to zero, then the new system would have an SLS with respect 
to -0~/2, where the averaging is in the same sense as in Eq. (19). 

Thus, substituting A +�89 t )I  for A in (27)-(28), we obtain the 
general sufficient condition for SLS: 

If there exists a nonsingular matrix P such that for all times t 

Ar(F(t), t) P+ PA(F(t), t ) =  -~(F( t ) ,  t) P 
(29) 

A(F(t), t) P+ PAr(F(t), t ) =  -~(F( t ) ,  t) P 

then there is an SLS with respect to -8 /2 .  
Particularly, if P = J, the relations (29) turn into 

Ar(F(t), t) J+ JA(F(t), t) = -~(F( t ) ,  t) J (30) 

For c~ = const, (30) is the sufficient condition obtained in ref. 4. 
Although we have two matrix equations on the local stability matrix 

in the condition (29), some arguments exist t2~ that the global stability 
matrix should have the same eigenvalues as the evolution matrix raised to 
the power of 1/t when t ---, ~ under some restrictions plausible for systems 
with a realistic interparticle interaction. In that case any equation of (29) 
(we will use the first one) can serve as a sufficient condition for an SLS. 

We note that if P satisfies (29), then so does pr and consequently the 
symmetric matrix p + p r  and the antisymmetric matrix p _ p r ,  and at 
least one of which would be nondegenerate. Therefore we can search for 
only symmetric or antisymmetric matrices P satisfying condition (29) for 
our A. Since most physical systems are obtained by a modification of 
Hamiltonian systems for which P is antisymmetric, it is natural to look for 
only antisymmetric matrices P. 

We now derive another sufficient condition for an SLS that may be 
more convenient for practical use. Consider a system whose equations of 
motion can be obtained from the ones of another system with an SLS 
(e.g., Hamiltonian) by an invertible time-independent linear phase-space 
transformation Q: 

F ' = Q - t F  (31) 

The local stability matrix corresponding to the new variables is then 

A'=Q- 'AQ (32) 
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The matrices A and A' are similar and according to the definitions (9) and 
(6) the corresponding evolution matrices are also similar. Though this 
similarity cannot be extended straightforwardly to the global stability 
matrices, if the conditions under which the latter has the same eigenvalues 
as the evolution matrix (2) are met, we can use (31) as a good sufficient 
condition for an SLS. 

Suppose that for the old system the matrix P satisfying the first 
condition in (29) exists; then the new system also has such a matrix: 

p,= QrpQ (33) 

As an example we consider the SLLOD equations (~3) designed for the 
simulation of planar Couette flow in two dimensions, where N particles are 
subject to a constant shear rate V = du/ay, with u the mean flow velocity 
whose direction is chosen as the x axis. The equations of motion are 

(]i  = Pi/m + iTqi>, 
(34) 

]~i = Fi -- i7/~0, 

where Pt = P i -  imu is the peculiar momentum (13) of the ith particle defined 
as the part of the normal momentum p~ relevant for heat motion. 

Though this system is not Hamiltonian, it has an SLS with respect to 
zero (7) because it can be reduced to a Hamiltonian system by a time- 
independent linear transformation: p~.,.~p,-mTq~>,. Using (33), we find 
the matrix P '  for which the condition (27) is satisfied: 

0 rnyI ( 1 / m ) I  0 ) 

P' = - m y I  0 0 ( l /m) I 
- ( 1 / m ) I  0 0 0 

0 - ( l / m )  I 0 0 

(35) 

where each block is N•  N, and the phase space variables are in the 
following order: q~ ....... qNx, ql., ...... q~)., Pl ........ PNx, PI., ...... PN.,, (the first 
index enumerates the particle, while the second one indicates the coor- 
dinate axis x or y). 

4. SLS IN T H E R M O S T A T T E D  S Y S T E M S  

Recently (7.s) an SLS property was discovered in dynamical systems 
serving as algorithms for nonequilibrium molecular dynamics simulations of 
fluids. (~s) In these systems particles interact with each other via a Lennard- 
Jones-like potential and are also subject to an external force field. The 
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existence of a steady state is guaranteed by the introduction of a thermostat 
removing the heat generated by the mechanical work done by this force. 

The functional form of the thermostatted equations of motion is 
obtained from Gauss' principle of least constraint, stating that the actual 
motion in a system subject to constraints is the one that deviates minimally 
from the unconstrained motion. Gauss' principle is one of the equivalent 
variational principles introduced in the mechanics of nonholonomic systems 
(those with nonintegrable constraints)Y ~4~ The domain of applicability of 
all of them is strictly speaking unknown, but they were successfully applied 
to various practical problemsJ t51 The thermostatting procedure results in 
an additional viscous friction type force being exerted upon each particle. 
Although the procedure does not resemble the experimental situation, 
where the temperature is kept constant via the system boundaries, numeri- 
cal simulations ~7 91 so far show that it leads to results consistent with 
experimental data at least if the number of particles is sufficiently large. Use 
of the SLS property dramatically simplifies the procedure of calculating the 
transport coefficients of the system via LE t5'61 from using the sum of all of 
them to that of only two LE, e.g., the maximum and the minimum ones. 171 

First we show how to obtain equations of motion for thermostatted 
systems. Let the adiabatic (pertaining to a system of N particles without a 
thermostat), equations of motion in peculiar variables be of the form 

/I, = fi(q, P) (36) 

bi = g ~ ( q ,  P) 

where Eqs. (36) may implicitly contain a heat-generating external field. 
Indices in this and the following sections range from 1 to N unless 
otherwise specified. 

If the system is subject to the constraint 

T(q, ~, t) = const (37) 

then the actual value of ~ corresponds to the minimum of the variable 

1 _  l �9 , 
C = ~ L / ~ /  ( ~ i -  gi)- (38) 

i i 

where mi is the mass of the ith particle. 
One can reformulate (37)-(38) as the requirement for the least 

possible effect of the constraint force upon the system. 4~4~ 
Expressing the constraint equation (37) in a ~i-dependent form, we 

have 
dT OT r ( ~T~ t3T 

~ 0 (39) - - = - - + L  
dt ~t ~ v,t~ f ;+  
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Using the Lagrangian multiplier ct, we obtain a convenient form of 
(37)-(38): 

O C+~t = 0  (40) 

It follows from (38)-(40) that the second equation in (36) can be replaced 
by 

OT 
Pi = gi(q, P) -m ,c t  ~ (41) 

oPi 

without any additional constraints. The functional form of ~(q, ~, t) is 
obtained by substituting (41) into (39), which yields 

(42) 

This approach can be generalized to include any number of constraints. 
We now show that if one disregards terms O(1/N), and the adiabatic 

system is Hamiltonian and meets some generic requirements, then for the 
thermostatted system with the two types of constraints introduced below 
there is an SLS with respect to -~ /2 .  

First consider the isokinetic constraint 

P__i_7 = const (43) Tkin = 2 2 m  i 

Substituting (43) into (41) and (42), we obtain the equation for Pi: 

~, = g , (q ,  ~)  --  c~O, (44)  

and the corresponding expression for ~: 

~i (Pigilmi) 
~ki. = Z i  (O~/m,) (45) 

Due to anticipated mixing, we expect the interparticle forces and the 
momenta of the particles to be of the same order of magnitude, respec- 
tively, for sufficiently large times. Constructing then the local stability 
matrix A'", we estimate the ratio of ~ to/~/dct/c3/]j to be of order N, and the 
ratios of Ogi/Oqj to /]k &t/Oq,, also of order N if we assume in addition 
that the particle masses are all of the same order of magnitude and that 
the particles interact via a short-range potential (e.g., Lennard-Jones 
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potential), i.e., that each particle effectively interacts with only O(1) 
number of particles. Then in the limit of N-~ ~ we can neglect all the 
terms containing partial derivatives of ~ and in this approximation the 
matrix A ~h has the form 17) 

,4th__AHam ; ( O I  0/.)- ; (~ 0i) (46) 

The matrix A th satisfies the sufficient condition (30) because the first two 
terms in (46) are infinitesimally symplectic matrices which satisfy (10) .  t7) 

Therefore the thermostatted system has an SLS with respect to -~/2.  
If, on the other hand, the full internal energy is kept constant, 

~9 
T ~ , = ~  2miP" + ~ (q )=cons t  (47) 

[where ~(q) and Fi = -Oc~/Oqi are, respectively, the total potential energy 
and the force on the ith particle due to the other particles], then we still 
have Eq. (44), but with a different ~: 

Y~i Fill 
ct.. =~ki. Zi(~/mi) (48) 

Although extra terms stemming from partial derivatives of ct appear in this 
case in the local stability matrix, we are able to disregard them as well 
under the same assumptions as in the previous case. 

Thus for both constraints in the limit of N-~ ~ the terms in the local 
stability matrix containing partial derivatives of ct can be generically 
discarded. The local stability matrix for the thermostatted system is then 
of the form (46) and the SLS property follows from the SLS in the 
adiabatic system. 

The question of whether the SLS property holds to all orders of I/N 
terms is not resolved, but numerical simulations 17'91 suggest that it does. 
Supposing that for the adiabatic system (36) the sum of all Lyapunov 
exponents is zero and using (19), we can calculate the sum of all LE for the 
thermostatted system: 

2n 
~, O(~/~)_ ~ ( n - 2 ) - f i  (49) 2i = tr A = - 3/~k 

k=l k=l 

Using (45) and (48), we obtain expressions for fl for the two constraints, 
respectively: 
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. . . .  

flkin = O(kin "~ ~/~ i / )  ~" ~ P---L"- (50 )  
, ~  , m, @ U f , ~ = , m ,  

tic, =flkm - F, Pk O/ ,~ /~ ,  p__~,.- (51) 

Thus if an SLS holds with the 1IN terms being taken into account, we 
see from (49) that the symmetry constant will also have I /N corrections, 
since it is given by - �89  - 2 / n ) - ( l / n ) f l ]  instead of -~ /2 .  

5. SLS IN COLOR C O N D U C T I V I T Y  

As a typical example we consider the color conductivity algorithm, ~16~ 
designed for the study of self-diffusion of identical particles, which we 
generalize here by adding a "magnetic" field. Consider a two-dimensional 
system of two kinds of particles, each having the same mass m but different 
color "charge" ci = +1. The entire system is color neutral. All particles are 
subject to a constant external color field F,. applied along the x direction 
and to a constant external "magnetic" field B applied along the z direction. 
The adiabatic equations of motion in normal (nonpeculiar) variables and 
in two dimensions can be derived from the Hamiltonian 

Hco, = ~ + q~(q)-F,.  ~c,q+.,.+ B ~c+ [q,,.Pi,.-qcPi.,.]. 
i i i 

The color field generates a current per particle along the x direction: 

(52) 

I c iP ix  
J"=N~, -m 

but does not affect the mean velocity in the .v direction: 

(53) 

I P i v  
J" = -N ~ ,,7 (54) 

It is natural to require for the peculiar momenta ~+ci/~i,.=0, as there 
should be no peculiar current ~13~ and ~ i f i 0 . = 0 ,  as the mean peculiar 
velocity in the .I, direction should be equal to zero as well. Thus, we define 
peculiar momenta in this case as follows: 

pi.,.- = pix - mciJv 

pi,. = Po . -  m J>. 
(55) 
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The transformation (55) is degenerate due to the linear dependence of the 
peculiar momenta. 

We rewrite the adiabatic equations of motion in peculiar variables and 
apply Gauss'  principle with the isokinetic constraint to obtain 

~ 

�9 P ix 
qix ciBq o. + ciJx(t) P1"1 

(li,.=PiY + ciBqi.~ + J.v(t) 
m 

(56) 
z Ci~k 
pi.,.=Fi.,.--~ ckFk. , . -c iB~, . -@i , -  

PO' = F~,. + ciBPix - ~ffi.,, 

with J.,.(t) and J,.(t) independent of the peculiar variables. From (45) we 
find the functional form of ~ for the Eqs. (56): 

EiFiPi  
~(q' P) - Z ,  P~ (57) 

The procedure in ref. 16 where the equations of motion are written in 
terms of normal (nonpeculiar) variables yields the same expression (57) as 
well as the same local stability matrix up to terms of the order of 1IN. In 
the absence of the "magnetic" field the expression for ~ is not affected by 
the choice of normal or peculiar y components of the momenta, because in 
this case we suppose that the mean velocity in Eq. (54) is already zero in 
normal variables in the stationary state. But if B # 0, the choice of normal 
y components of momenta would result in the dependence of c~ upon the 
"magnetic" field, which is unnatural, since the latter does not generate 
any heat to be removed. We also note that while the color field Fc is 
absent from the equations in peculiar variables, the "magnetic" field terms 
in the equations are not affected by the choice of normal or peculiar 
variables (55). 

As in the previous section, the local stability matrix for the Eqs. (56) 
is of the form (46) in the limit of N ~  ~ and therefore the system has an 
SLS with respect to - ~ / 2  as an asymptotic property. As for the 1IN correc- 
tions to the symmetry constant, from (50) and (51) we find that for the 
color conductivity equations (56) /~kin:0~kin and /~en=0. Thus for this 
system with or without "magnetic" field the sum of all Lyapunov exponents 
is proportional to ~ with an N-dependent coefficient regardless of whether 
the constraint is isokinetic or isoenergetic. This is not true for Hamiltonian 
systems in general. In fact, for the thermostatted DOLLS equations {~3~ 

8 2 2 / 7 4 / 5 - 6 - 1 4  
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which can simulate planar Couette flow in the linear regime ~3~ f ie ,= 
-(~'Z,P,xP~,.)/(Z,~) and flki,=~tki,+fle,.  The last relationship is also 
not universal for Hamiltonian systems: it is specific to Hamiltonians of the 
form 

~2 
H = ~ - ~ m + ~ ( q ) +  Z aikqiP~+ ~, b~Pk 

i , k = l  kffil 

where aik and b k do not depend on the coordinates and momenta. 
The SLS property for the color conductivity and the DOLLS equa- 

tions was confirmed numerically in ref. 8. The Gaussian thermostats can 
also be applied to the SLLOD equations (34) and an SLS in the resulting 
system was also observed, c7"8~ but to prove this analytically for all short- 
range potentials remains a challenge. 

6. CONCLUSION 

As we have demonstrated, even for the systems considered in this 
paper the question of Lyapunov spectrum symmetry remains open. While 
the Eqs. (56) suggest for a system with a finite number of particles N at 
best a symmetry with respect to an N-dependent constant, this symmetry 
has so far been proved only neglecting the 1/N terms. There is also the 
problem of the evaluation of the symmetry constant for finite N. 

It should be pointed out, though, that insofar as the Lyapunov 
exponents are connected to the transport coefficients [cf. Eq. (11 ) of ref. 7-1 
a very large (effectively infinite) number of particles is involved, since the 
transport coefficients are defined in that limit. 

We remark that we did not take into account the first integrals of the 
system and the zero LE associated with them in the treatment of an SLS, 
so the question of the existence of an SLS in that case remains open. 

It would be extremely useful to establish a connection between the 
SLS property and other easily verified symmetries of the system. Conserva- 
tion of phase volume in the adiabatic case was shown ~sl to be insufficient 
for an SLS. This is not surprising since this symmetry requires only the 
sum of all local eigenvalues to be zero; then according to (19) the sum of 
a / / L E  is also zero, but this bears no relation to SLS (which implies that 
the sums of each conjugate pair of Lyapunov exponents are equal), as 
was demonstrated on an example in ref. 12. Time-reversal invariance (TRI) 
is not necesary for SLS either, the simplest counterexample being a 
Hamiltonian system with a Hamiltonian linear in the momenta, c~7~ Such a 
system has SLS, but does not have TRI. Some questions related to TRI 
and SLS are investigated in ref. 18. 
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